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Solutions

Problem 1. Let n > 3 be an integer. A frog is to jump along the real axis, starting at the
point 0 and making n jumps: one of length 1, one of length 2, . . . , one of length n. It may
perform these n jumps in any order. If at some point the frog is sitting on a number a 6 0,
its next jump must be to the right (towards the positive numbers). If at some point the
frog is sitting on a number a > 0, its next jump must be to the left (towards the negative
numbers). Find the largest positive integer k for which the frog can perform its jumps in
such an order that it never lands on any of the numbers 1, 2, . . . , k.

Solution. We claim that the largest positive integer k with the given property is bn−1
2
c,

where bxc is by definition the largest integer not exceeding x.

Consider a sequence of n jumps of length 1,2, . . .n such that the frog never lands on any of
the numbers 1, 2, . . . , k, where k > 1. Note that we must have k < n in order for the frog
to be able to make its first jump. As the frog jumps to the right only if it is in a number
a 6 0, and the largest jump has length n, it is impossible to reach numbers greater than
n. On the other hand, suppose the frog is in a number a > 0, then it must even be in
a number a > k + 1, since it is not allowed to hit the numbers 1, 2, . . . , k. So the frog
jumps to the left only if it is in a number a > k + 1, and therefore it is impossible to reach
numbers less than (k + 1)− n = k− n+ 1. This means the frog only possibly lands on the
numbers i satisfying

k − n + 1 6 i 6 0 or k + 1 6 i 6 n. (1)

When performing a jump of length k, the frog has to remain at either side of the numbers
1, 2, . . . , k. Indeed, jumping over 1, 2, . . . , k requires a jump of at least length k + 1. In
case it starts at a number a > 0 (in fact k + 1 6 a 6 n), it lands in a− k and we must also
have a− k > k + 1. So 2k + 1 6 a 6 n, therefore 2k + 1 6 n. In case it starts at a number
a 6 0 (in fact k − n + 1 6 a 6 0), it lands in a + k and we must also have a + k 6 0.
Adding k to both sides of k− n + 1 6 a, we obtain 2k− n + 1 6 a + k 6 0, so in this case
we have 2k + 1 6 n as well. We conclude that k 6 n−1

2
. Since k is integer, we even have

k 6 bn−1
2
c.



Next we prove that this upperbound is sharp: for k = bn−1
2
c the frog really can perform

its jumps in such an order that it never lands on any of the numbers 1, 2, . . . , k.

Suppose n is odd, then n−1
2

is an integer and we have k = n−1
2

, so n = 2k + 1. We claim
that when the frog performs the jumps of length 1, . . . , 2k + 1 in the following order, it
does never land on 1, 2, . . . , k: it starts with a jump of length k + 1, then it performs two
jumps, one of length k + 2 followed by one of length 1, next two jumps of length k + 3 and
2, . . . , next two jumps of length k + (i + 1) and i, . . . , and finally two jumps of length
k + (k + 1) and k. In this order of the jumps every length between 1 and n = 2k + 1 does
occur: it performs a pair of jumps for 1 6 i 6 k, which are the jumps of length 1, 2, . . . ,
k and the jumps of length k + 2, k + 3, . . . , 2k + 1, and it starts with the jump of length
k + 1.

We now prove the correctness of this jumping scheme. After the first jump the frog lands
in k + 1 > k. Now suppose the frog is in 0 or k + 1 and is about to perform the pair of
jumps of length k + (i + 1) and i. Starting from 0, it lands in k + (i + 1) > k, after which
it lands in (k + i + 1) − i = k + 1 > k. If on the contrary it starts in k + 1, it lands in
(k + 1)− (k + (i+ 1)) = −i < 1, after which it lands in (−i) + i = 0. We see that, starting
in 0, the frog lands in k + 1 after the pair of jumps, while starting in k + 1 the frog lands
in 0, while in both cases the jumps do not touch 1, 2, . . . k. This proves the correctness of
its series of jumps. As the frog (after its first jump) alters between k + 1 and 0 exactly k
times, for odd k it will end up in 0, while for even k it will end up in k + 1.

Suppose n is even, then n−1
2

is not an integer and we have k = n−1
2
− 1

2
= n−2

2
, so n = 2k+2.

Let the frog firstly perform the same series of jumps as in the previous case; they still do
not touch 1, 2, . . . , k. Now let the frog make a final extra jump of length 2k + 2. It will
land in 0 + (2k + 2) = 2k + 2 > k if k is odd, or in (k + 1)− (2k + 2) = −k − 1 < 1 if k is
even, and its series of jumps is correct again.

We conclude that the largest positive integer k with the given property is bn−1
2
c. �



Problem 2. Find all functions f : R→ R such that

f(x + y) + y 6 f(f(f(x))) (2)

holds for all x, y ∈ R.

Solution. Let f : R → R be a function satisfying the given inequality (2). Writing z for
x + y, we find that f(z) + (z − x) 6 f(f(f(x))), or equivalently

f(z) + z 6 f(f(f(x))) + x (3)

for all x, z ∈ R. Substituting z = f(f(x)) yields f(f(f(x))) + f(f(x)) 6 f(f(f(x))) + x,
from which we see that

f(f(x)) 6 x (4)

for all x ∈ R. Substituting f(x) for x we get f(f(f(x))) 6 f(x), which combined with (3)
gives f(z) + z 6 f(f(f(x))) + x 6 f(x) + x. So

f(z) + z 6 f(x) + x (5)

for all x, z ∈ R. By symmetry we see that we also have f(x) + x 6 f(z) + z, from which
we conclude that in fact we even have

f(z) + z = f(x) + x (6)

for all x, z ∈ R. So f(z) + z = f(0) + 0 for all z ∈ R, and we conclude that f(z) = c − z
for some c ∈ R.

Now we check whether all functions of this form satisfy the given inequality. Let c ∈ R be
given and consider the function f : R→ R defined by f(z) = c− z for all z ∈ R. Note that
f(f(z)) = c− (c− z) = z for all z ∈ R. For the lefthand side of (2) we find

f(x + y) + y = (c− (x + y)) + y = c− x,

while the righthand side reads

f(f(f(x))) = f(x) = c− x.

We see that inequality (2) holds; in fact we even have equality here.

We conclude that the solutions to (2) are given by the functions f : R → R defined by
f(z) = c− z for all z ∈ R, where c is an arbitrary real constant. �



Problem 3. Let 4ABC be a triangle with circumcircle Γ, and let I be the center of the
incircle of 4ABC. The lines AI, BI and CI intersect Γ in D 6= A, E 6= B and F 6= C.
The tangent lines to Γ in F , D and E intersect the lines AI, BI and CI in R, S and T ,
respectively. Prove that

|AR| · |BS| · |CT | = |ID| · |IE| · |IF |. (7)

Solution. We first prove that |DB| = |DI|. (This may also be claimed by referring to the
lemma that D is the centre of the circumcircle of BICIa.) By the constant angle theorem
and the fact that AD and BE are angle bisectors of triangle ABC, we see that

∠DBI = ∠DBC + ∠CBI = ∠DAC + ∠CBE = ∠DAB + ∠ABE,

while
∠DIB = 180◦ − ∠AIB = ∠IAB + ∠ABI = ∠DAB + ∠ABE.

So 4BDI has equal angles ∠DBI = ∠DIB, so |DB| = |DI|. This proves our claim. We
similarly deduce that |EC| = |EI| and |FA| = |FI|.

Rewriting (7) into |AR|
|IF | ·

|BS|
|ID| ·

|CT |
|IE| = 1, we see that it suffices to prove that

|AR|
|AF |

· |BS|
|BD|

· |CT |
|CE|

= 1. (8)

We now prove by angle chasing that4RFA ∼ 4ACI. As RF is tangent to the circumcircle
of 4AFC, we obtain (using also that CF is angle bisector of ∠ACB)

∠RFA = ∠FCA = ∠ICA.

Moreover, from |FA| = |FI| we deduce that ∠FAI = ∠FIA, so

∠FAR = 180◦ − ∠FAI = 180◦ − ∠FIA = ∠CIA.

This proves our similarity, which entails that |AR|
|AF | = |IA|

|IC| . In the same way we deduce that
|BS|
|BD| = |IB|

|IA| and |CT |
|CE| = |IC|

|IB| . By these equal ratios we know that

|AR|
|AF |

· |BS|
|BD|

· |CT |
|CE|

=
|IA|
|IC|

· |IB|
|IA|

· |IC|
|IB|

= 1,

which proves (8), as required. �



Problem 4.

a) Find all positive integers g with the following property: for each odd prime number
p there exists a positive integer n such that p divides the two integers

gn − n and gn+1 − (n + 1).

b) Find all positive integers g with the following property: for each odd prime number
p there exists a positive integer n such that p divides the two integers

gn − n2 and gn+1 − (n + 1)2.

Solution.

a) Let g be a positive integer with the given property. So for each odd prime number p
there exists a positive integer n such that p | gn − n and p | gn+1 − (n + 1).

If g has an odd prime factor p, then from p | gn − n it follows that p | n, while from
p | gn+1 − (n + 1) we deduce that p | n + 1. But p cannot divide both n and n + 1;
contradiction. So g is a power of 2: g = 2k for some k > 0.

If g = 20 = 1, then p | 1− n and p | 1− (n + 1), which is again a contradiction.

Suppose k > 2. Then g − 1 has an odd prime factor p, therefore g ≡ 1 (mod p) so
0 ≡ gn− n ≡ 1− n (mod p) and 0 ≡ gn+1− (n+ 1) ≡ 1− (n+ 1) (mod p), which is
again a contradiction.

Now we prove that g = 21 = 2 does satisfy the condition. Let a prime p > 2 be
given. Choose n = (p−1)2, then we have n ≡ (−1)2 = 1 (mod p). By Fermat’s little
theorem (using gcd(2, p) = 1) we know that 2p−1 ≡ 1 (mod p), so

2n = 2(p−1)2 = (2p−1)p−1 ≡ 1 ≡ n (mod p).

Multiplying both sides by 2, we see that also

2n+1 ≡ 2n = n + n ≡ n + 1 (mod p).

We conclude that only g = 2 has the given property.

b) Let g be a positive integer with the given property. So for each odd prime number p
there exists a positive integer n such that p | gn − n2 and p | gn+1 − (n + 1)2.

If g has an odd prime factor p, then from p | gn − n2 it follows that p | n2, so also
p | n, while from p | gn+1 − (n + 1)2 we deduce that p | (n + 1)2, so also p | n + 1.



But p cannot divide both n and n + 1; contradiction. So g is a power of 2: g = 2k

for some k > 0.

If g = 20 = 1, then for any odd prime p we have p | 1 − n2 = (1 − n)(1 + n) and
p | 1 − (n + 1)2 = (1 − (n + 1))(1 + (n + 1)). Now take p = 5. The first statement
says that n ≡ 1 or n ≡ −1 ≡ 4 (mod 5), and the second that n ≡ 0 or n ≡ −2 ≡ 3
(mod 5). But this yields a contradiction.

If g = 21 = 2, then for any odd prime p we have p | 2n − n2 and p | 2n+1 − (n + 1)2.
Now take p = 3. As 3 - 2n and 3 - 2n+1, we know that 3 - n2 and 3 - (n+1)2. So these
two squares must be 1 modulo 3 (as 2 can never be a square modulo 3). Therefore
also 2n and 2n+1 must be 1 modulo 3, which gives 2 · 1 ≡ 2 · 2n = 2n+1 ≡ 1 (mod 3);
contradiction.

Now suppose k > 2. Then g− 1 has an odd prime factor p, therefore g ≡ 1 (mod p)
so 0 ≡ gn − n2 ≡ 1 − n2 = (1 − n)(1 + n) (mod p) and 0 ≡ gn+1 − (n + 1)2 ≡
1− (n+1)2 = (1− (n+1))(1+(n+1)) (mod p). Suppose p > 5. The first statement
says that n ≡ 1 or n ≡ −1 (mod p), and the second that n ≡ 0 or n ≡ −2 (mod p).
But n can only be congruent to at most one of the numbers −2, −1, 0 and 1, since
p > 5; contradiction. We conclude that p = 3, so g − 1 contains only prime factors
3. Hence 2k − 1 = 3` for some ` > 0. We see that 2k − 1 ≡ (−1)k − 1 (mod 3),
while 3` ≡ 0 (mod 3). So k has to be even, say k = 2m, and our equation becomes
22m−1 = 3`, or equivalently (2m−1)(2m +1) = 3`. Not both factors on the left-hand
side can be divisible by 3, so 2m−1 = 1 and 2m+1 = 3`, so m = 1. Hence g = 22 = 4.

Now we show that g = 4 does have the given property. For this we use that g = 2 is
a solution to part (a): for any odd prime p there exists a positive integer n such that

n ≡ 2n (mod p) and n + 1 ≡ 2n+1 (mod p).

Taking the square of both congruences, we obtain

n2 ≡ (2n)2 = (22)n = 4n (mod p)

and
(n + 1)2 ≡ (2n+1)2 = (22)n+1 = 4n+1 (mod p),

as desired.

We conclude that only g = 4 has the given property.

�


